术以及潮汐能发电技术,形成一个可循环的基础绿色电网方案,用作电解水制氢的初始能源。这些相关的设备选型、技术选择上,秦克直接交给了新能源部的主管丁思博来搞定,他自己则带着宁青筠、沉胜贤及三个从青柠植物培育实验室临时抽调过来的计算机工程师,全力攻克另一个前期难关——解决不同绿电之间的初步并网消纳问题。
所谓的并网消纳问题,主要是指不同绿电技术产出的电力消化吸纳以及动态再平衡,保证供电的持续性与稳定性,并尽可能地不浪费电力。要解决并网消纳问题,就要研究出一套高效、能实现动态平衡的电力管理系统。
众所周知,主流的风力、光伏、潮汐等绿电基本上都有周期性且不稳定、波动较大。
比如风电,风大时产生的电力多,无风时就无法产生电力,光伏发电同理,晚上或者无阳光时是无法发电的,所以这些绿电技术往往都采用“分布式发电+储能”的模式,并具备基础的储能条件,但想建立一个将不同的绿电技术完美结合、有动态平衡能力、能达到最佳的并网消纳效果,以实现电解制氢的不间断稳定运行的“动态平衡电力管理系统”,就成为了前期的一个难点,这关乎后续的绿氢研究能否真正展开。
当然,从理论上来说,哪怕没有这个“动态平衡电力管理系统”,也不影响到电解制氢,但电力供应会比较不稳定,且制氢成本会很高,甚至比起其他制氢方式劣势明显,那这套“新型海水澹化技术方案”就算研究出来也会效果大打折扣,失去了原本的意义,更无法达到系统任务要求的“受到市场认可”。
想研究出一套优秀的“动态平衡电力管理系统”,非常依赖计算机技术以及ai的智能管理。